

#### Equivalent Reactor Networks as Reduced-Order Models in a CAPE-OPEN Compliant Architecture

Ellen Meeks

DE-FE0001074

December 16, 2009 NETL Pittsburgh, PA

LEADING THE WAY TO CLEAN COMBUSTION DESIGN

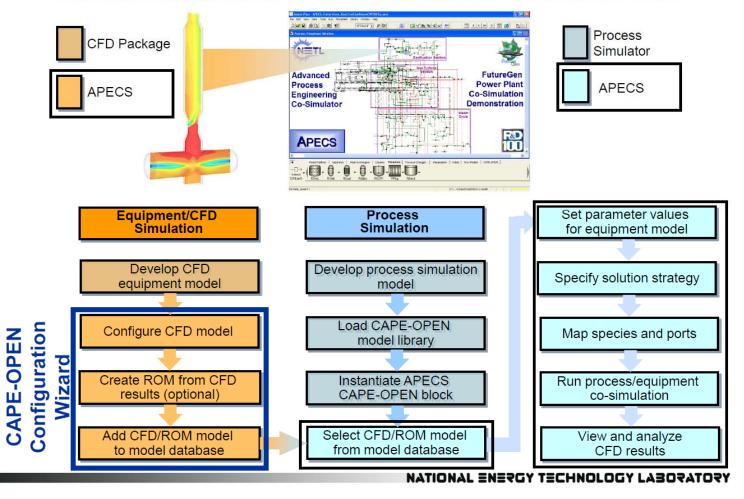
#### Outline

- Overview of project goals & scope
- Technical contributors
- Background on Reaction Design
  - Our technology base
- Project plan
  - Tasks and Milestones
  - Deliverables
  - Timeline

#### Current Status



#### Our main goal is to create a new reducedorder model capability for APECS


- Project duration: 3 years
- Start date: 10-1-2009
- Project Objectives:
  - Enable advanced reduced-order modeling for key unit operations in flow-sheet simulations, using Cape-Open architecture
  - Use Equivalent Reactor Networks (ERNs) as basis for reduced-order models
  - Extend ENERGICO ERN-extraction for application to gasifiers



### **APECS** is a co-simulation program at NETL<sup>\*</sup>

#### **APECS Co-Simulation Workflow**

#### Seamless Integration of CFD and Process Simulation Tasks



\*From S. Zitney, APECS Workshop, Oct 2009.

## The application focus is on coal-gasification plants, especially involving IGCC

- APECS integrates CFD and reduced-ordermodels (ROMs) into flow-sheet simulations for plant design
  - Built on CAPE-OPEN interface to, e.g., AspenPlus
- Our "bridge" technology between CFD and detailed-kinetics simulations provides an automated way to create ROMs
  - Uses "equivalent reactor network" approach, or ERN
  - Gas-turbine combustors are already modeled
  - Extensions to multi-phase flow for gasifier simulations



### Key Contributors to the project

#### • Ellen Meeks, Pl

Head of product development at Reaction Design

#### • Tony Garratt, Technical lead

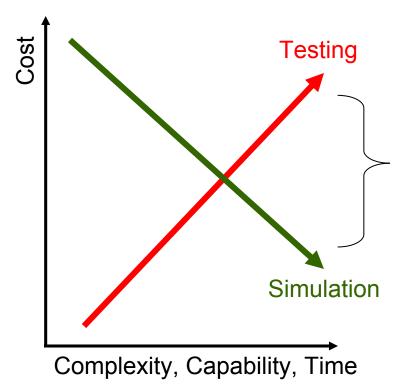
- Senior Numerical Analyst and Team Lead at RD
- Worked for 15+ years at Aspentech

#### • Cheng Wang, Staff Development Engineer

- Key software architect for Reaction Design
- C.-P. Chou, Staff Development Engineer
  - Combustion and surface-chemistry expert

#### Scott Drennan, Director of Apps Engineering

- Lead in IGCC applications


#### **Reaction Design's mission**

• Empowering transportation and energy companies to design and develop the cleanest possible combustion systems



DESIGN

#### Simulation reduces cost of development



• There is a growing opportunity to:

- Reduce risk
- Improve use of testing
- Speed development
- Facilitate innovation



### **Reaction Design's core business**

#### We are in the business of:

- Chemical Kinetics Software
  - CHEMKIN<sup>®</sup> Software
    - \* Exclusive worldwide distributor & developer since 1997
  - CHEMKIN-CFD/API™ Module
    - \* Kinetics solver plug-in for CFD Simulation
  - ENERGICO<sup>™</sup> Simulation Package
    - \* Emissions modeling for Gas-turbine Combustors

#### Professional Services

- Chemical kinetics applications
- Mechanism development, validation, reduction
- Custom software
- Industry-led Consortia

toward the development of clean technology

### **CHEMKIN-PRO** is our flagship product

- CHEMKIN is the standard for chemical kinetics calculations
  - Most widely cited and validated kinetics software available
- Focused on accurate simulations of chemistry for:
  - Gas Turbines
  - Automotive engines
  - Industrial/Utility Burners
  - Chemical Processing and Refinery
  - Materials and Microelectronics



#### **CHEMKIN-CFD™ Module -- built on CHEMKIN**

CFD Simulator (e.g. FLUENT) Solves Navier-Stokes Eqs. Energy and Fluid Transport Turbulence Models

#### **CHEMKIN-CFD**<sup>™</sup>

Solves Stiff Species Eqs. Surface and Gas Kinetics Multi-component Transport

#### Accurate 3-Dimensional Modeling with Chemistry



## Reaction Design has a track record of successful contract research and services



U.S. AIR FORCE

### US DoD: Soot Formation in Rocket and Jet Engines (SBIR)

- Particle size distribution tracking module
- Soot particle growth / oxidation chemistry model
- Linking chemistry & particle tracking into CFD
- Hypersonic flow simulation

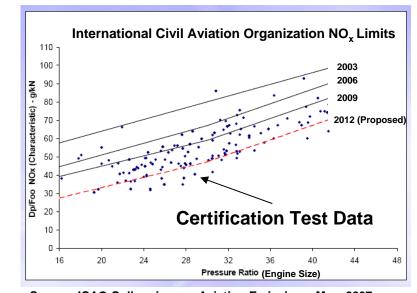


#### • NASA: Alternative Jet Fuels (Grant)

- Fischer-Tropsch fuels
- Biofuels for jet applications
- Mechanism development and reduction
- Collaboration with USC

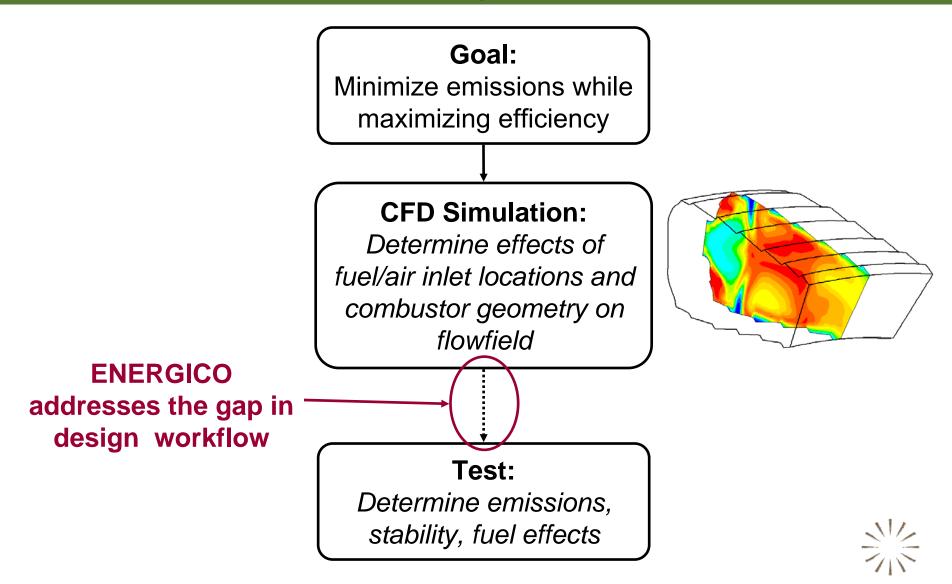


#### • US DoE FreedomCAR: Biofuels (CRA)


- Biodiesel fuels
- Soot formation modeling
- Collaboration with USC, Chevron

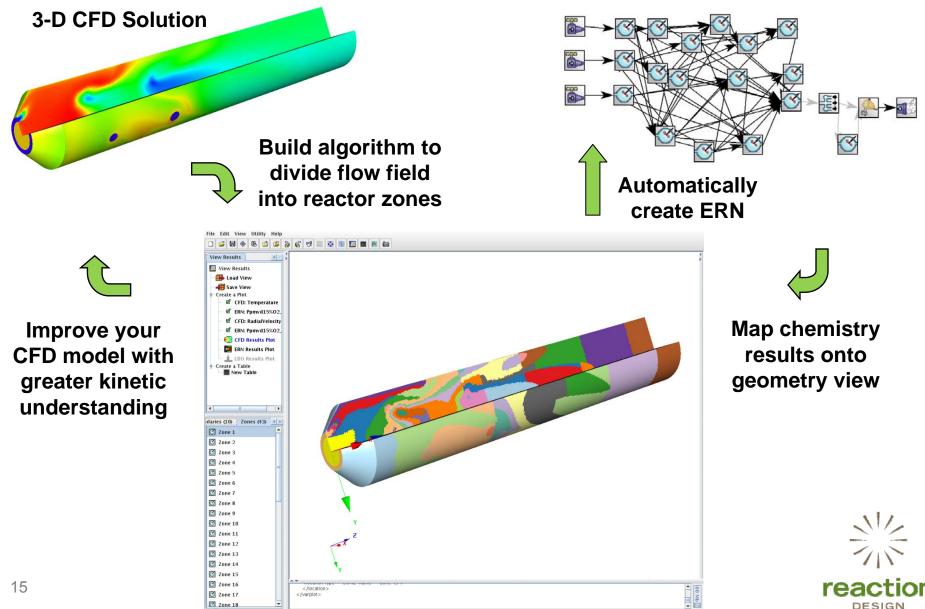


#### **ENERGICO™** is Reaction Design's latest product

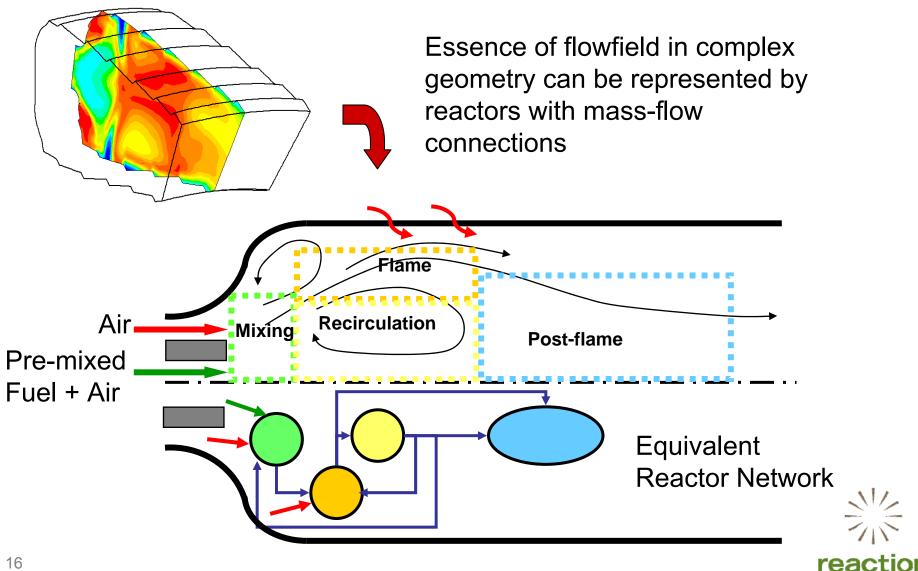

#### Created to address key issues facing gasturbine combustor designers

- Low Emissions Regulations
  - ICAO limits on nitrogen oxides (NO<sub>x</sub>), carbon monoxide (CO) and Unburned Hydrocarbons (UH)
  - \* New particulate emissions regulations
- Fuel Flexibility
  - \* Alternative Fuels
  - Opportunity Fuels
  - Biofuels for carbon dioxide (CO<sub>2</sub>) reduction
- Combustion stability
  - \* Lean Blow Off assessment
  - \* Flash-back
  - \* Ignition



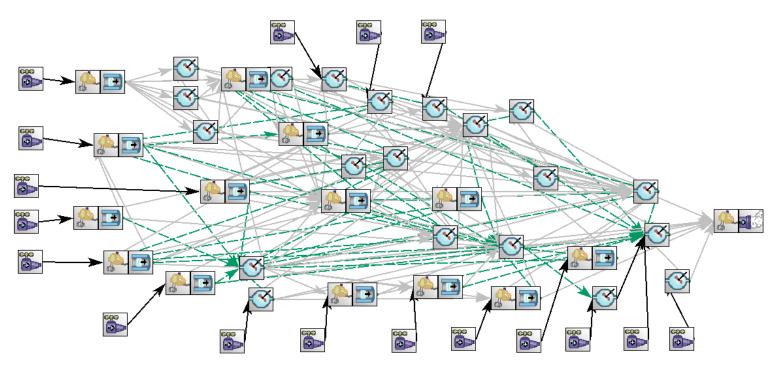

Source: ICAO Colloquium on Aviation Emissions, May, 2007

### ENERGICO<sup>™</sup> creates a bridge between CFD and required chemistry information




DESIGN

### Automatic creation of Equivalent Reactor Networks adds chemistry to design flow

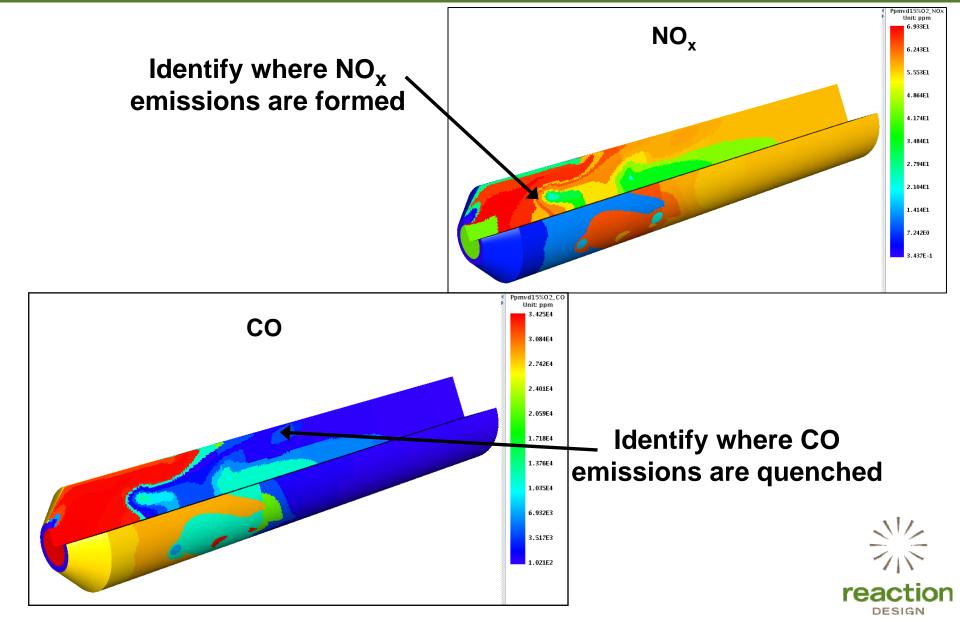



#### **Reactor networks represent complex** systems while allowing detailed kinetics



DESIGN

# ENERGICO creates complex reactor networks quickly and automatically



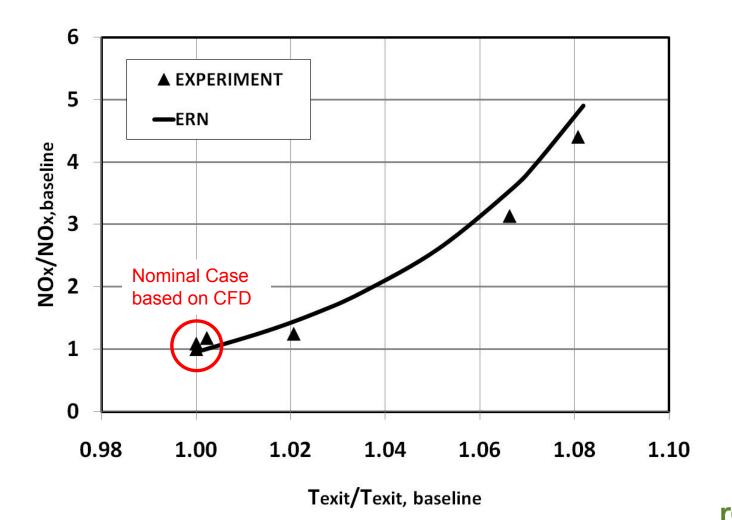

• Automation supports commercial design timelines

- Creates ERNs in minutes rather than months
- Enables widespread use by combustor designers
- Accurately follows specific sets of rules
  - Correct-by-Construction



## Results mapped back to the CFD mesh show ERN predictions in geometric context




### Sample ENERGICO results compared to data for gas-fired gas-turbine combustors

| Class of Combustor<br>(all CO less than 10ppm) | Fuel Type   | NO<br>Variance | CO<br>Variance |
|------------------------------------------------|-------------|----------------|----------------|
| 10MW Less than 10ppm NO <sub>x</sub>           | Natural Gas | 1ppm           | 2ppm           |
| 25MW 25ppm NO <sub>x</sub>                     | Natural Gas | 2ppm           | 2ppm           |
| 250MW Less than 10ppm NO <sub>x</sub>          | Natural Gas | 1ppm           | 2ppm           |
| 250MW 25ppm NO <sub>x</sub>                    | Natural Gas | 2ppm           | 2ppm           |
| 250MW 25ppm NO <sub>x</sub>                    | Syngas      | 2ppm           | 2ppm           |



## Joint work with GE demonstrated the ERN can *predict* impact of load variation on NO<sub>x</sub>

• Increased Fuel/Air Ratio from single data point



DESIGN

### **ENERGICO: Key Benefits**

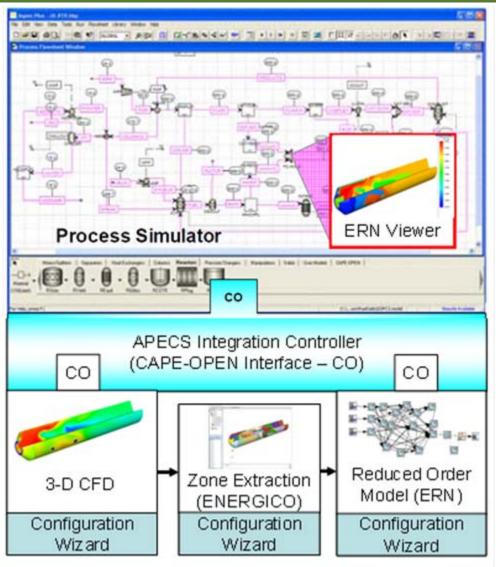
- Effective integration of detailed chemistry into engineering workflow
  - Fewer, better-directed experiments
  - Simulate conditions that cannot be experimentally tested

#### Rapid evaluation of fuel and design effects

- Accurate emissions predictions using overlay with CFD
  - \* NO<sub>x</sub>, CO, UHC
- Ability to determine contributions to NO<sub>x</sub>
  - \* Thermal NO<sub>x</sub>
  - \* Prompt NO<sub>x</sub>

#### Platform for combustion stability analysis

- Lean Blow Off assessment



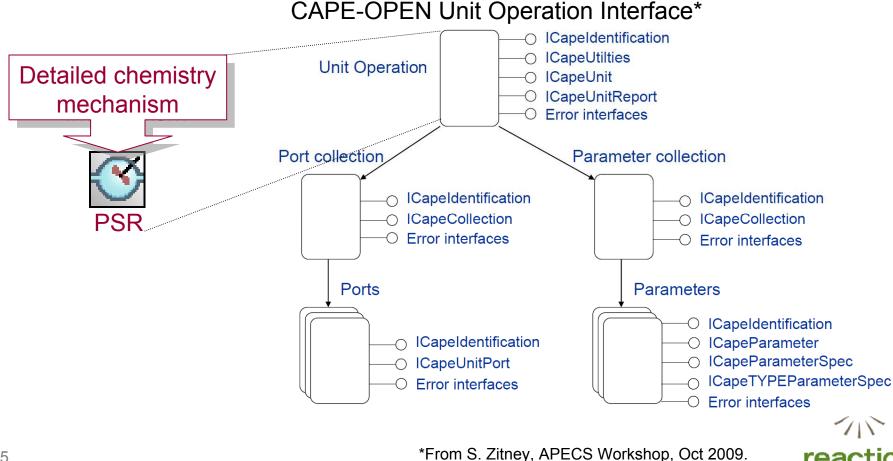

## For this project, we will extend these concepts to gasifier simulations

- Use ERN concept to generate "reduced order model" or ROM within a plant simulation
- Build the ERN automatically from CFD results
  - Account for multi-phase flow effects
  - Identify dominant flow characteristics
- Apply more advanced kinetics models than current practice allows
  - More than a ROM, as it adds chemistry detail
- Package into CAPE-OPEN architecture
  - Allow use within APECS program



### Big picture goal: integrate into APECS



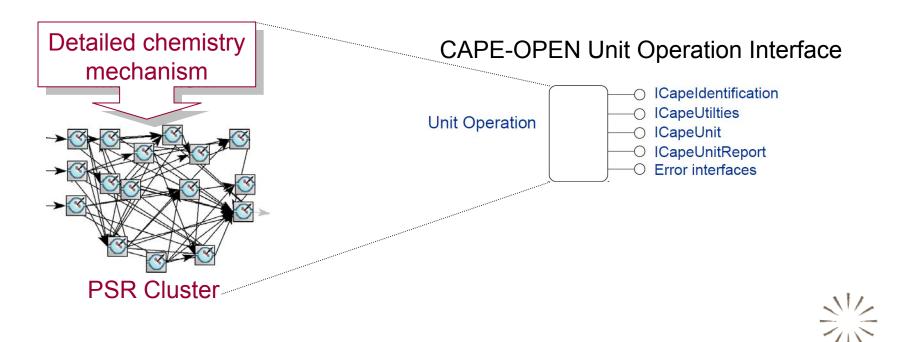

### Major Tasks are identified in the SOPO

- 1. Project Management and Planning
- 2. Package CHEMKIN Models as a CAPE-OPEN Unit Reactor Model
- 3. Extending ENERGICO Software and Workflow for Gasifier Models
- 4. Evaluate Gasification Kinetics Models
- 5. Code and Model Integration, Testing and Validation



#### We begin by wrapping a single Perfectly Stirred Reactor (PSR) with CAPE-OPEN

• The CHEMKIN PSR is the core reactor model for our equivalent reactor networks




DESIGN

### The next step will be to wrap a "Cluster" of PSRs to allow a network with recycle flows

### • In CHEMKIN, the PSR Cluster is solved as a single computational job

- Numerically, all PSRs in the Cluster are fully coupled
- Multiple inlets, single outlet

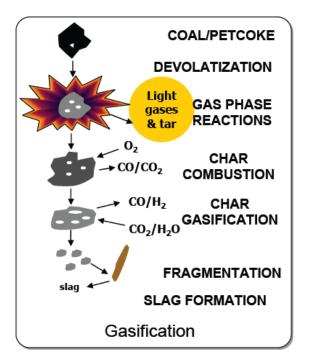


DESIGN

## Concurrently, we are looking at extending ENERGICO capabilities for gasification

#### • Identify key flow parameters

- Focus on Entrained Flow Gasifiers
- Use as filters to generate ERN
- Handle multi-phase flow properties
  - Particle density, size distribution, composition


#### Test kinetics models for gasification processes

- Literature search
- Incorporation into CHEMKIN's gas and surface-chemistry formalisms



## Gasification model will start by testing what's available in the literature

- Processes that need to be considered:
  - Early particle devolatilization, pyrolysis, and reaction
  - Char particle burn out
  - Gas phase reaction mechanisms for pyrolysis and reforming
  - Interactions with the slag (molten ash) within the gasifier



From L. Oshinowo, NETL 2009 Workshop on Multiphase Flow Science, 2009



#### Expected major milestones in first 18 months

| A | Title:<br>Planned Date:<br>Verification Method: | 6/1/2010  |
|---|-------------------------------------------------|-----------|
| B | Title:<br>Planned Date:<br>Verification Method: | 9/15/2010 |
| С | Title:<br>Planned Date:<br>Verification Method: | 2/15/2011 |



#### Deliverables will include reports and models

#### • Topical reports

- CAPE-OPEN integration with CHEMKIN PSR models
- ENERGICO extensions for gasification applications
- Assessment of coal-gasification kinetics models

#### Models

- NETL access to the ENERGICO<sup>™</sup> Simulation
  Package, for duration of project
- NETL access to software modifications and enhancements made during this project
- All model input parameters for reported results



#### **Project Timeline**

| ID | Task Name                                 |    |            | 2010    |            |            |             | 2011   |                |                         |            | 2012                    |            |            |             | 2013  |
|----|-------------------------------------------|----|------------|---------|------------|------------|-------------|--------|----------------|-------------------------|------------|-------------------------|------------|------------|-------------|-------|
| 1  | 1.0 Project Management                    | Q3 | Q4         | _ Q1    | Q2         | Q3         | Q4          | Q1     | Q2             | Q3                      | Q4         | Q1                      | Q2         | Q3         | Q4          | Q1    |
| 2  | 1.1 Establish Project Plan                |    | _          |         |            |            |             |        |                |                         |            |                         |            |            |             |       |
| 3  | 1.2 Reporting                             | -  | <b>-</b> ] |         |            |            |             |        |                |                         |            |                         |            |            |             |       |
| 4  |                                           |    |            |         | $\diamond$ | $\diamond$ | $\diamond$  | \$     | $\diamond$     | ~                       | $\diamond$ | ~                       | $\diamond$ | $\diamond$ |             |       |
| 16 | Quarterly Progress Reports                | -  |            | <b></b> | $\diamond$ | $\diamond$ |             | $\sim$ | $\diamond$     | <u>ہ</u>                | $\diamond$ | \$                      | $\diamond$ | $\diamond$ |             |       |
| 17 | Topical Reports                           |    |            |         |            |            |             |        |                | $\diamond$              |            | $\diamond$              |            |            |             |       |
|    | Topical Reports 1                         |    |            |         |            |            | <b>10/4</b> |        |                |                         | -          |                         |            |            |             |       |
| 18 | Topical Reports 2                         |    |            |         |            |            |             |        |                | <b>*</b> <sup>7/2</sup> | 5          |                         |            |            |             |       |
| 19 | Topical Reports 3                         |    |            |         |            |            |             |        |                |                         |            | a 2/:                   | 3          |            |             |       |
| 20 | Final Report                              |    |            |         |            |            |             |        |                |                         |            |                         |            |            | 4           | 12/31 |
| 21 | 2.0 CAPE-OPEN Interface                   |    |            |         | ļÇ         | )———       | ¢           |        |                |                         |            | <b>•</b>                |            |            |             |       |
| 22 | 2.1 CHEMKIN PSR Model                     |    | - <b>T</b> |         |            | ו          |             |        |                |                         |            |                         |            |            |             |       |
| 23 | Milestone A                               | 1  |            |         | 4          | Α          |             |        |                |                         |            |                         |            |            |             |       |
| 24 | 2.2 PSR Cluster                           | 1  |            |         | (          |            | ₽           |        |                |                         |            |                         |            |            |             |       |
| 25 | Milestone B                               | 1  |            |         |            |            | 🔶 🖪         |        |                |                         |            |                         |            |            |             |       |
| 26 | 2.3 General ERN                           | 1  |            |         |            |            | <b>—</b>    | -      |                | 1                       |            |                         |            |            |             |       |
| 27 | 2.4 Test and Validate                     | 1  |            |         | 6          | ·          |             |        |                | _                       |            | h                       |            |            |             |       |
| 28 | BP1 Decision Pts / Success Criteria       | 1  |            |         |            |            |             |        | <b>4 1,2,3</b> |                         |            |                         |            |            |             |       |
| 29 | 3.0 Extend ENERGICO                       | 1  | -          |         |            |            |             |        |                | -                       |            |                         |            |            |             |       |
| 30 | 3.1 Identify Requirements                 | 1  | _ <b>č</b> |         | 1          |            |             |        |                |                         |            |                         |            |            |             |       |
| 31 | 3.2 Extend for 2-phase Flow               | 1  |            | 1       |            |            | h           |        |                |                         |            |                         |            |            |             |       |
| 32 | Milestone C                               | 1  |            |         |            |            |             | •      | 0              |                         |            |                         |            |            |             |       |
| 33 | 3.3 Extend ERN Particle Treatment         | 1  |            |         |            |            | 2           | -      |                |                         |            |                         |            |            |             |       |
| 34 | Milestone D                               | 1  |            |         |            |            |             |        |                | •                       | D          |                         |            |            |             |       |
| 35 | 3.4 Test and Validate                     | 1  |            |         |            |            |             |        |                | _ <b>*</b>              |            | μ,                      |            |            |             |       |
| 36 | 4.0 Evaluate Gasification Kinetics Models | 1  |            |         |            |            |             |        |                |                         |            |                         |            |            |             |       |
| 37 | 4.1 Literature review                     |    |            |         |            |            |             |        |                |                         |            |                         |            |            |             |       |
| 38 | 4.2 Testing and Evaluation                |    |            |         |            |            | <b>*</b>    |        |                |                         |            | $\downarrow \downarrow$ |            |            |             |       |
| 39 | Milestone E                               |    |            |         |            |            |             |        |                |                         |            |                         | ♦ E        |            |             |       |
| 40 | BP2 Decision Pts / Success Criteria       | 1  |            |         |            |            |             |        |                |                         |            |                         |            |            | <b>4</b> ,5 |       |
| 41 | 5.0 Code and Model Integration            |    |            |         |            |            |             |        |                |                         |            | ÷——                     |            |            |             |       |
| 42 | 5.1 Test of Code Integration              |    |            |         |            |            |             |        |                |                         |            |                         |            | <u> </u>   |             |       |
| 43 | Milestone F                               |    |            |         |            |            |             |        |                |                         |            |                         |            |            | <b>⊳</b> F  |       |
| 44 | 5.2 Test of Modeling Approach             |    |            |         |            |            |             |        |                |                         |            |                         |            |            |             |       |
|    | 3 TF                                      |    |            |         |            |            |             |        |                |                         |            |                         |            |            |             |       |

#### Progress to date

- We have a draft project plan in place for the first 12 months
- We are in the process of getting familiar with the details of CAPE-OPEN architecture requirements
  - Identifying any changes needed in our CHEMKIN architecture to accommodate a wrapper approach
- We have placed a PO for an AspenPlus License
- Conversations have begun with potential gasifier manufacturer partners



### We might need some help from NETL

- Technical contact, who could provide guidance on CAPE-OPEN implementation, in case we get stuck
- Sample multi-phase flow CFD case(s) we could use to test ERN extraction

Test dependencies on different filters

• Any verification data for kinetics model development for gasification process



#### Summary

- We are ramping up quickly on the new project
- The project is focused on the use of equivalent reactor networks to allow overlay kinetics on detailed flow (CFD) simulations
- The scope of the project is for coal gasifiers
  - We are particularly interested in IGCC operations
- Reaction Design has some unique capabilities that provide a good starting point for this work
- As a software company, our goal is to provide commercial product as a result of this project